darknet  v3
blas.c
Go to the documentation of this file.
1 #include "blas.h"
2 
3 #include <math.h>
4 #include <assert.h>
5 #include <float.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
10 {
11  int b,i,j,k;
12  int out_c = c/(stride*stride);
13 
14  for(b = 0; b < batch; ++b){
15  for(k = 0; k < c; ++k){
16  for(j = 0; j < h; ++j){
17  for(i = 0; i < w; ++i){
18  int in_index = i + w*(j + h*(k + c*b));
19  int c2 = k % out_c;
20  int offset = k / out_c;
21  int w2 = i*stride + offset % stride;
22  int h2 = j*stride + offset / stride;
23  int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
24  if(forward) out[out_index] = x[in_index];
25  else out[in_index] = x[out_index];
26  }
27  }
28  }
29  }
30 }
31 
32 void flatten(float *x, int size, int layers, int batch, int forward)
33 {
34  float *swap = calloc(size*layers*batch, sizeof(float));
35  int i,c,b;
36  for(b = 0; b < batch; ++b){
37  for(c = 0; c < layers; ++c){
38  for(i = 0; i < size; ++i){
39  int i1 = b*layers*size + c*size + i;
40  int i2 = b*layers*size + i*layers + c;
41  if (forward) swap[i2] = x[i1];
42  else swap[i1] = x[i2];
43  }
44  }
45  }
46  memcpy(x, swap, size*layers*batch*sizeof(float));
47  free(swap);
48 }
49 
50 void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
51 {
52  int i;
53  for(i = 0; i < n; ++i){
54  c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0);
55  }
56 }
57 
58 void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc)
59 {
60  int i;
61  for(i = 0; i < n; ++i){
62  if(da) da[i] += dc[i] * s[i];
63  if(db) db[i] += dc[i] * (1-s[i]);
64  ds[i] += dc[i] * (a[i] - b[i]);
65  }
66 }
67 
68 void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
69 {
70  int stride = w1/w2;
71  int sample = w2/w1;
72  assert(stride == h1/h2);
73  assert(sample == h2/h1);
74  if(stride < 1) stride = 1;
75  if(sample < 1) sample = 1;
76  int minw = (w1 < w2) ? w1 : w2;
77  int minh = (h1 < h2) ? h1 : h2;
78  int minc = (c1 < c2) ? c1 : c2;
79 
80  int i,j,k,b;
81  for(b = 0; b < batch; ++b){
82  for(k = 0; k < minc; ++k){
83  for(j = 0; j < minh; ++j){
84  for(i = 0; i < minw; ++i){
85  int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
86  int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
87  out[out_index] = s1*out[out_index] + s2*add[add_index];
88  }
89  }
90  }
91  }
92 }
93 
94 void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
95 {
96  float scale = 1./(batch * spatial);
97  int i,j,k;
98  for(i = 0; i < filters; ++i){
99  mean[i] = 0;
100  for(j = 0; j < batch; ++j){
101  for(k = 0; k < spatial; ++k){
102  int index = j*filters*spatial + i*spatial + k;
103  mean[i] += x[index];
104  }
105  }
106  mean[i] *= scale;
107  }
108 }
109 
110 void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
111 {
112  float scale = 1./(batch * spatial - 1);
113  int i,j,k;
114  for(i = 0; i < filters; ++i){
115  variance[i] = 0;
116  for(j = 0; j < batch; ++j){
117  for(k = 0; k < spatial; ++k){
118  int index = j*filters*spatial + i*spatial + k;
119  variance[i] += pow((x[index] - mean[i]), 2);
120  }
121  }
122  variance[i] *= scale;
123  }
124 }
125 
126 void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial)
127 {
128  int b,f,i;
129  for(b = 0; b < batch; ++b){
130  for(i = 0; i < spatial; ++i){
131  float sum = 0;
132  for(f = 0; f < filters; ++f){
133  int index = b*filters*spatial + f*spatial + i;
134  sum += powf(x[index], 2);
135  }
136  sum = sqrtf(sum);
137  for(f = 0; f < filters; ++f){
138  int index = b*filters*spatial + f*spatial + i;
139  x[index] /= sum;
140  dx[index] = (1 - x[index]) / sum;
141  }
142  }
143  }
144 }
145 
146 
147 void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
148 {
149  int b, f, i;
150  for(b = 0; b < batch; ++b){
151  for(f = 0; f < filters; ++f){
152  for(i = 0; i < spatial; ++i){
153  int index = b*filters*spatial + f*spatial + i;
154  x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
155  }
156  }
157  }
158 }
159 
160 void const_cpu(int N, float ALPHA, float *X, int INCX)
161 {
162  int i;
163  for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
164 }
165 
166 void mul_cpu(int N, float *X, int INCX, float *Y, int INCY)
167 {
168  int i;
169  for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX];
170 }
171 
172 void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
173 {
174  int i;
175  for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA);
176 }
177 
178 void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
179 {
180  int i;
181  for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX];
182 }
183 
184 void scal_cpu(int N, float ALPHA, float *X, int INCX)
185 {
186  int i;
187  for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
188 }
189 
190 void fill_cpu(int N, float ALPHA, float *X, int INCX)
191 {
192  int i;
193  for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
194 }
195 
196 void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
197 {
198  int i, j;
199  int index = 0;
200  for(j = 0; j < B; ++j) {
201  for(i = 0; i < NX; ++i){
202  if(X) X[j*NX + i] += OUT[index];
203  ++index;
204  }
205  for(i = 0; i < NY; ++i){
206  if(Y) Y[j*NY + i] += OUT[index];
207  ++index;
208  }
209  }
210 }
211 
212 void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
213 {
214  int i, j;
215  int index = 0;
216  for(j = 0; j < B; ++j) {
217  for(i = 0; i < NX; ++i){
218  OUT[index++] = X[j*NX + i];
219  }
220  for(i = 0; i < NY; ++i){
221  OUT[index++] = Y[j*NY + i];
222  }
223  }
224 }
225 
226 void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
227 {
228  int i;
229  for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
230 }
231 
232 void mult_add_into_cpu(int N, float *X, float *Y, float *Z)
233 {
234  int i;
235  for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i];
236 }
237 
238 void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
239 {
240  int i;
241  for(i = 0; i < n; ++i){
242  float diff = truth[i] - pred[i];
243  float abs_val = fabs(diff);
244  if(abs_val < 1) {
245  error[i] = diff * diff;
246  delta[i] = diff;
247  }
248  else {
249  error[i] = 2*abs_val - 1;
250  delta[i] = (diff < 0) ? 1 : -1;
251  }
252  }
253 }
254 
255 void l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
256 {
257  int i;
258  for(i = 0; i < n; ++i){
259  float diff = truth[i] - pred[i];
260  error[i] = fabs(diff);
261  delta[i] = diff > 0 ? 1 : -1;
262  }
263 }
264 
265 void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
266 {
267  int i;
268  for(i = 0; i < n; ++i){
269  float t = truth[i];
270  float p = pred[i];
271  error[i] = (t) ? -log(p) : 0;
272  delta[i] = t-p;
273  }
274 }
275 
276 void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
277 {
278  int i;
279  for(i = 0; i < n; ++i){
280  float t = truth[i];
281  float p = pred[i];
282  error[i] = -t*log(p) - (1-t)*log(1-p);
283  delta[i] = t-p;
284  }
285 }
286 
287 void l2_cpu(int n, float *pred, float *truth, float *delta, float *error)
288 {
289  int i;
290  for(i = 0; i < n; ++i){
291  float diff = truth[i] - pred[i];
292  error[i] = diff * diff;
293  delta[i] = diff;
294  }
295 }
296 
297 float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
298 {
299  int i;
300  float dot = 0;
301  for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY];
302  return dot;
303 }
304 
305 void softmax(float *input, int n, float temp, int stride, float *output)
306 {
307  int i;
308  float sum = 0;
309  float largest = -FLT_MAX;
310  for(i = 0; i < n; ++i){
311  if(input[i*stride] > largest) largest = input[i*stride];
312  }
313  for(i = 0; i < n; ++i){
314  float e = exp(input[i*stride]/temp - largest/temp);
315  sum += e;
316  output[i*stride] = e;
317  }
318  for(i = 0; i < n; ++i){
319  output[i*stride] /= sum;
320  }
321 }
322 
323 
324 void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output)
325 {
326  int g, b;
327  for(b = 0; b < batch; ++b){
328  for(g = 0; g < groups; ++g){
329  softmax(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset);
330  }
331  }
332 }
333 
334 void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
335 {
336  int i, j, k, b;
337  for(b = 0; b < batch; ++b){
338  for(k = 0; k < c; ++k){
339  for(j = 0; j < h*stride; ++j){
340  for(i = 0; i < w*stride; ++i){
341  int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride;
342  int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i;
343  if(forward) out[out_index] = scale*in[in_index];
344  else in[in_index] += scale*out[out_index];
345  }
346  }
347  }
348  }
349 }
350 
351 
void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
Definition: blas.c:172
void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial)
Definition: blas.c:126
def sample(probs)
Definition: darknet.py:5
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
Definition: blas.c:178
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error)
Definition: blas.c:287
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
Definition: blas.c:147
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
Definition: blas.c:110
void scal_cpu(int N, float ALPHA, float *X, int INCX)
Definition: blas.c:184
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
Definition: blas.c:238
void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
Definition: blas.c:196
void mul_cpu(int N, float *X, int INCX, float *Y, int INCY)
Definition: blas.c:166
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
Definition: blas.c:297
void softmax(float *input, int n, float temp, int stride, float *output)
Definition: blas.c:305
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
Definition: blas.c:265
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
Definition: blas.c:94
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
Definition: blas.c:276
void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output)
Definition: blas.c:324
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
Definition: blas.c:68
void flatten(float *x, int size, int layers, int batch, int forward)
Definition: blas.c:32
void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
Definition: blas.c:212
void l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
Definition: blas.c:255
void const_cpu(int N, float ALPHA, float *X, int INCX)
Definition: blas.c:160
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
Definition: blas.c:334
void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc)
Definition: blas.c:58
void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
Definition: blas.c:9
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
Definition: blas.c:226
void mult_add_into_cpu(int N, float *X, float *Y, float *Z)
Definition: blas.c:232
void fill_cpu(int N, float ALPHA, float *X, int INCX)
Definition: blas.c:190
void error(const char *s)
Definition: utils.c:253
void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
Definition: blas.c:50