6 from scipy.misc
import imread
10 arr = arr.transpose(2,0,1)
15 data = dn.c_array(dn.c_float, arr)
16 im = dn.IMAGE(w,h,c,data)
19 def detect2(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
20 boxes = dn.make_boxes(net)
21 probs = dn.make_probs(net)
22 num = dn.num_boxes(net)
23 dn.network_detect(net, image, thresh, hier_thresh, nms, boxes, probs)
26 for i
in range(meta.classes):
28 res.append((meta.names[i], probs[j][i], (boxes[j].x, boxes[j].y, boxes[j].w, boxes[j].h)))
29 res = sorted(res, key=
lambda x: -x[1])
30 dn.free_ptrs(dn.cast(probs, dn.POINTER(dn.c_void_p)), num)
34 sys.path.append(os.path.join(os.getcwd(),
'python/'))
39 net = dn.load_net(
"cfg/tiny-yolo.cfg",
"tiny-yolo.weights", 0)
40 meta = dn.load_meta(
"cfg/coco.data")
41 r = dn.detect(net, meta,
"data/dog.jpg")
45 arr= imread(
'data/dog.jpg')
51 arr = cv2.imread(
'data/dog.jpg')
def detect2(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45)
void flatten(float *x, int size, int layers, int batch, int forward)