darknet  v3
regressor.c
Go to the documentation of this file.
1 #include "darknet.h"
2 #include <sys/time.h>
3 #include <assert.h>
4 
5 void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
6 {
7  int i;
8 
9  float avg_loss = -1;
10  char *base = basecfg(cfgfile);
11  printf("%s\n", base);
12  printf("%d\n", ngpus);
13  network **nets = calloc(ngpus, sizeof(network*));
14 
15  srand(time(0));
16  int seed = rand();
17  for(i = 0; i < ngpus; ++i){
18  srand(seed);
19 #ifdef GPU
20  cuda_set_device(gpus[i]);
21 #endif
22  nets[i] = load_network(cfgfile, weightfile, clear);
23  nets[i]->learning_rate *= ngpus;
24  }
25  srand(time(0));
26  network *net = nets[0];
27 
28  int imgs = net->batch * net->subdivisions * ngpus;
29 
30  printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
31  list *options = read_data_cfg(datacfg);
32 
33  char *backup_directory = option_find_str(options, "backup", "/backup/");
34  char *train_list = option_find_str(options, "train", "data/train.list");
35  int classes = option_find_int(options, "classes", 1);
36 
37  list *plist = get_paths(train_list);
38  char **paths = (char **)list_to_array(plist);
39  printf("%d\n", plist->size);
40  int N = plist->size;
41  clock_t time;
42 
43  load_args args = {0};
44  args.w = net->w;
45  args.h = net->h;
46  args.threads = 32;
47  args.classes = classes;
48 
49  args.min = net->min_ratio*net->w;
50  args.max = net->max_ratio*net->w;
51  args.angle = net->angle;
52  args.aspect = net->aspect;
53  args.exposure = net->exposure;
54  args.saturation = net->saturation;
55  args.hue = net->hue;
56  args.size = net->w;
57 
58  args.paths = paths;
59  args.n = imgs;
60  args.m = N;
61  args.type = REGRESSION_DATA;
62 
63  data train;
64  data buffer;
65  pthread_t load_thread;
66  args.d = &buffer;
67  load_thread = load_data(args);
68 
69  int epoch = (*net->seen)/N;
70  while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
71  time=clock();
72 
73  pthread_join(load_thread, 0);
74  train = buffer;
75  load_thread = load_data(args);
76 
77  printf("Loaded: %lf seconds\n", sec(clock()-time));
78  time=clock();
79 
80  float loss = 0;
81 #ifdef GPU
82  if(ngpus == 1){
83  loss = train_network(net, train);
84  } else {
85  loss = train_networks(nets, ngpus, train, 4);
86  }
87 #else
88  loss = train_network(net, train);
89 #endif
90  if(avg_loss == -1) avg_loss = loss;
91  avg_loss = avg_loss*.9 + loss*.1;
92  printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
93  free_data(train);
94  if(*net->seen/N > epoch){
95  epoch = *net->seen/N;
96  char buff[256];
97  sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
98  save_weights(net, buff);
99  }
100  if(get_current_batch(net)%100 == 0){
101  char buff[256];
102  sprintf(buff, "%s/%s.backup",backup_directory,base);
103  save_weights(net, buff);
104  }
105  }
106  char buff[256];
107  sprintf(buff, "%s/%s.weights", backup_directory, base);
108  save_weights(net, buff);
109 
110  free_network(net);
111  free_ptrs((void**)paths, plist->size);
112  free_list(plist);
113  free(base);
114 }
115 
116 void predict_regressor(char *cfgfile, char *weightfile, char *filename)
117 {
118  network *net = load_network(cfgfile, weightfile, 0);
119  set_batch_network(net, 1);
120  srand(2222222);
121 
122  clock_t time;
123  char buff[256];
124  char *input = buff;
125  while(1){
126  if(filename){
127  strncpy(input, filename, 256);
128  }else{
129  printf("Enter Image Path: ");
130  fflush(stdout);
131  input = fgets(input, 256, stdin);
132  if(!input) return;
133  strtok(input, "\n");
134  }
135  image im = load_image_color(input, 0, 0);
136  image sized = letterbox_image(im, net->w, net->h);
137 
138  float *X = sized.data;
139  time=clock();
140  float *predictions = network_predict(net, X);
141  printf("Predicted: %f\n", predictions[0]);
142  printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
143  free_image(im);
144  free_image(sized);
145  if (filename) break;
146  }
147 }
148 
149 
150 void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
151 {
152 #ifdef OPENCV
153  printf("Regressor Demo\n");
154  network *net = load_network(cfgfile, weightfile, 0);
155  set_batch_network(net, 1);
156 
157  srand(2222222);
158  CvCapture * cap;
159 
160  if(filename){
161  cap = cvCaptureFromFile(filename);
162  }else{
163  cap = cvCaptureFromCAM(cam_index);
164  }
165  list *options = read_data_cfg(datacfg);
166  int classes = option_find_int(options, "classes", 1);
167  char *name_list = option_find_str(options, "names", 0);
168  char **names = get_labels(name_list);
169 
170  if(!cap) error("Couldn't connect to webcam.\n");
171  cvNamedWindow("Regressor", CV_WINDOW_NORMAL);
172  cvResizeWindow("Regressor", 512, 512);
173  float fps = 0;
174 
175  while(1){
176  struct timeval tval_before, tval_after, tval_result;
177  gettimeofday(&tval_before, NULL);
178 
179  image in = get_image_from_stream(cap);
180  image crop = center_crop_image(in, net->w, net->h);
181  grayscale_image_3c(crop);
182 
183  float *predictions = network_predict(net, crop.data);
184 
185  printf("\033[2J");
186  printf("\033[1;1H");
187  printf("\nFPS:%.0f\n",fps);
188 
189  int i;
190  for(i = 0; i < classes; ++i){
191  printf("%s: %f\n", names[i], predictions[i]);
192  }
193 
194  show_image(crop, "Regressor", 10);
195  free_image(in);
196  free_image(crop);
197 
198  gettimeofday(&tval_after, NULL);
199  timersub(&tval_after, &tval_before, &tval_result);
200  float curr = 1000000.f/((long int)tval_result.tv_usec);
201  fps = .9*fps + .1*curr;
202  }
203 #endif
204 }
205 
206 
207 void run_regressor(int argc, char **argv)
208 {
209  if(argc < 4){
210  fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
211  return;
212  }
213 
214  char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
215  int *gpus = 0;
216  int gpu = 0;
217  int ngpus = 0;
218  if(gpu_list){
219  printf("%s\n", gpu_list);
220  int len = strlen(gpu_list);
221  ngpus = 1;
222  int i;
223  for(i = 0; i < len; ++i){
224  if (gpu_list[i] == ',') ++ngpus;
225  }
226  gpus = calloc(ngpus, sizeof(int));
227  for(i = 0; i < ngpus; ++i){
228  gpus[i] = atoi(gpu_list);
229  gpu_list = strchr(gpu_list, ',')+1;
230  }
231  } else {
232  gpu = gpu_index;
233  gpus = &gpu;
234  ngpus = 1;
235  }
236 
237  int cam_index = find_int_arg(argc, argv, "-c", 0);
238  int clear = find_arg(argc, argv, "-clear");
239  char *data = argv[3];
240  char *cfg = argv[4];
241  char *weights = (argc > 5) ? argv[5] : 0;
242  char *filename = (argc > 6) ? argv[6]: 0;
243  if(0==strcmp(argv[2], "test")) predict_regressor(data, cfg, weights);
244  else if(0==strcmp(argv[2], "train")) train_regressor(data, cfg, weights, gpus, ngpus, clear);
245  else if(0==strcmp(argv[2], "demo")) demo_regressor(data, cfg, weights, cam_index, filename);
246 }
247 
248 
float min_ratio
Definition: darknet.h:472
void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
Definition: regressor.c:5
float hue
Definition: darknet.h:576
float decay
Definition: darknet.h:447
char ** paths
Definition: darknet.h:553
void run_regressor(int argc, char **argv)
Definition: regressor.c:207
int batch
Definition: darknet.h:436
int find_arg(int argc, char *argv[], char *arg)
Definition: utils.c:120
void set_batch_network(network *net, int b)
Definition: network.c:339
int w
Definition: darknet.h:559
float learning_rate
Definition: darknet.h:445
float hue
Definition: darknet.h:478
float momentum
Definition: darknet.h:446
void free_data(data d)
Definition: data.c:665
int max
Definition: darknet.h:565
int show_image(image p, const char *name, int ms)
Definition: image.c:575
char * find_char_arg(int argc, char **argv, char *arg, char *def)
Definition: utils.c:163
float aspect
Definition: darknet.h:573
char * basecfg(char *cfgfile)
Definition: utils.c:179
void ** list_to_array(list *l)
Definition: list.c:82
size_t * seen
Definition: darknet.h:437
char * option_find_str(list *l, char *key, char *def)
Definition: option_list.c:104
float train_network(network *net, data d)
Definition: network.c:314
int size
Definition: darknet.h:603
void free_list(list *l)
Definition: list.c:67
Definition: darknet.h:512
float max_ratio
Definition: darknet.h:471
int h
Definition: darknet.h:558
void predict_regressor(char *cfgfile, char *weightfile, char *filename)
Definition: regressor.c:116
void free_network(network *net)
Definition: network.c:716
data_type type
Definition: darknet.h:580
void save_weights(network *net, char *filename)
Definition: parser.c:1080
int size
Definition: darknet.h:565
network_predict
Definition: darknet.py:79
float exposure
Definition: darknet.h:575
int max_batches
Definition: darknet.h:453
void grayscale_image_3c(image im)
Definition: image.c:1194
letterbox_image
Definition: darknet.py:98
float aspect
Definition: darknet.h:475
int threads
Definition: darknet.h:552
int m
Definition: darknet.h:556
data * d
Definition: darknet.h:577
free_image
Definition: darknet.py:95
image center_crop_image(image im, int w, int h)
Definition: image.c:796
int subdivisions
Definition: darknet.h:440
image load_image_color(char *filename, int w, int h)
Definition: image.c:1486
int classes
Definition: darknet.h:566
float get_current_rate(network *net)
Definition: network.c:90
float saturation
Definition: darknet.h:477
float sec(clock_t clocks)
Definition: utils.c:232
float saturation
Definition: darknet.h:574
int find_int_arg(int argc, char **argv, char *arg, int def)
Definition: utils.c:133
network * load_network(char *cfg, char *weights, int clear)
Definition: network.c:53
char ** get_labels(char *filename)
Definition: data.c:657
int n
Definition: darknet.h:555
void * load_thread(void *ptr)
Definition: data.c:1090
void cuda_set_device(int n)
Definition: cuda.c:176
Definition: darknet.h:602
int min
Definition: darknet.h:565
list * read_data_cfg(char *filename)
Definition: option_list.c:7
int gpu_index
Definition: cuda.c:1
size_t get_current_batch(network *net)
Definition: network.c:63
int h
Definition: darknet.h:468
float angle
Definition: darknet.h:572
list * get_paths(char *filename)
Definition: data.c:12
free_ptrs
Definition: darknet.py:76
pthread_t load_data(load_args args)
Definition: data.c:1180
void error(const char *s)
Definition: utils.c:253
int option_find_int(list *l, char *key, int def)
Definition: option_list.c:112
int w
Definition: darknet.h:468
list classes
Definition: voc_label.py:9
Definition: darknet.h:538
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
Definition: regressor.c:150
float * data
Definition: darknet.h:516
float exposure
Definition: darknet.h:476
float angle
Definition: darknet.h:474