darknet  v3
tag.c
Go to the documentation of this file.
1 #include "darknet.h"
2 
3 void train_tag(char *cfgfile, char *weightfile, int clear)
4 {
5  srand(time(0));
6  float avg_loss = -1;
7  char *base = basecfg(cfgfile);
8  char *backup_directory = "/home/pjreddie/backup/";
9  printf("%s\n", base);
10  network *net = load_network(cfgfile, weightfile, clear);
11  printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
12  int imgs = 1024;
13  list *plist = get_paths("/home/pjreddie/tag/train.list");
14  char **paths = (char **)list_to_array(plist);
15  printf("%d\n", plist->size);
16  int N = plist->size;
17  clock_t time;
18  pthread_t load_thread;
19  data train;
20  data buffer;
21 
22  load_args args = {0};
23  args.w = net->w;
24  args.h = net->h;
25 
26  args.min = net->w;
27  args.max = net->max_crop;
28  args.size = net->w;
29 
30  args.paths = paths;
31  args.classes = net->outputs;
32  args.n = imgs;
33  args.m = N;
34  args.d = &buffer;
35  args.type = TAG_DATA;
36 
37  args.angle = net->angle;
38  args.exposure = net->exposure;
39  args.saturation = net->saturation;
40  args.hue = net->hue;
41 
42  fprintf(stderr, "%d classes\n", net->outputs);
43 
44  load_thread = load_data_in_thread(args);
45  int epoch = (*net->seen)/N;
46  while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
47  time=clock();
48  pthread_join(load_thread, 0);
49  train = buffer;
50 
51  load_thread = load_data_in_thread(args);
52  printf("Loaded: %lf seconds\n", sec(clock()-time));
53  time=clock();
54  float loss = train_network(net, train);
55  if(avg_loss == -1) avg_loss = loss;
56  avg_loss = avg_loss*.9 + loss*.1;
57  printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
58  free_data(train);
59  if(*net->seen/N > epoch){
60  epoch = *net->seen/N;
61  char buff[256];
62  sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
63  save_weights(net, buff);
64  }
65  if(get_current_batch(net)%100 == 0){
66  char buff[256];
67  sprintf(buff, "%s/%s.backup",backup_directory,base);
68  save_weights(net, buff);
69  }
70  }
71  char buff[256];
72  sprintf(buff, "%s/%s.weights", backup_directory, base);
73  save_weights(net, buff);
74 
75  pthread_join(load_thread, 0);
76  free_data(buffer);
77  free_network(net);
78  free_ptrs((void**)paths, plist->size);
79  free_list(plist);
80  free(base);
81 }
82 
83 void test_tag(char *cfgfile, char *weightfile, char *filename)
84 {
85  network *net = load_network(cfgfile, weightfile, 0);
86  set_batch_network(net, 1);
87  srand(2222222);
88  int i = 0;
89  char **names = get_labels("data/tags.txt");
90  clock_t time;
91  int indexes[10];
92  char buff[256];
93  char *input = buff;
94  int size = net->w;
95  while(1){
96  if(filename){
97  strncpy(input, filename, 256);
98  }else{
99  printf("Enter Image Path: ");
100  fflush(stdout);
101  input = fgets(input, 256, stdin);
102  if(!input) return;
103  strtok(input, "\n");
104  }
105  image im = load_image_color(input, 0, 0);
106  image r = resize_min(im, size);
107  resize_network(net, r.w, r.h);
108  printf("%d %d\n", r.w, r.h);
109 
110  float *X = r.data;
111  time=clock();
112  float *predictions = network_predict(net, X);
113  top_predictions(net, 10, indexes);
114  printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
115  for(i = 0; i < 10; ++i){
116  int index = indexes[i];
117  printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
118  }
119  if(r.data != im.data) free_image(r);
120  free_image(im);
121  if (filename) break;
122  }
123 }
124 
125 
126 void run_tag(int argc, char **argv)
127 {
128  if(argc < 4){
129  fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
130  return;
131  }
132 
133  int clear = find_arg(argc, argv, "-clear");
134  char *cfg = argv[3];
135  char *weights = (argc > 4) ? argv[4] : 0;
136  char *filename = (argc > 5) ? argv[5] : 0;
137  if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear);
138  else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename);
139 }
140 
float hue
Definition: darknet.h:576
float decay
Definition: darknet.h:447
char ** paths
Definition: darknet.h:553
pthread_t load_data_in_thread(load_args args)
Definition: data.c:1135
int find_arg(int argc, char *argv[], char *arg)
Definition: utils.c:120
void set_batch_network(network *net, int b)
Definition: network.c:339
int w
Definition: darknet.h:559
float learning_rate
Definition: darknet.h:445
float hue
Definition: darknet.h:478
float momentum
Definition: darknet.h:446
void free_data(data d)
Definition: data.c:665
int max
Definition: darknet.h:565
char * basecfg(char *cfgfile)
Definition: utils.c:179
void ** list_to_array(list *l)
Definition: list.c:82
size_t * seen
Definition: darknet.h:437
float train_network(network *net, data d)
Definition: network.c:314
int size
Definition: darknet.h:603
void free_list(list *l)
Definition: list.c:67
Definition: darknet.h:512
int h
Definition: darknet.h:558
void free_network(network *net)
Definition: network.c:716
int max_crop
Definition: darknet.h:469
data_type type
Definition: darknet.h:580
void save_weights(network *net, char *filename)
Definition: parser.c:1080
int size
Definition: darknet.h:565
network_predict
Definition: darknet.py:79
float exposure
Definition: darknet.h:575
int h
Definition: darknet.h:514
int max_batches
Definition: darknet.h:453
int resize_network(network *net, int w, int h)
Definition: network.c:358
image resize_min(image im, int min)
Definition: image.c:1001
int m
Definition: darknet.h:556
data * d
Definition: darknet.h:577
free_image
Definition: darknet.py:95
image load_image_color(char *filename, int w, int h)
Definition: image.c:1486
int classes
Definition: darknet.h:566
float get_current_rate(network *net)
Definition: network.c:90
float saturation
Definition: darknet.h:477
float sec(clock_t clocks)
Definition: utils.c:232
float saturation
Definition: darknet.h:574
network * load_network(char *cfg, char *weights, int clear)
Definition: network.c:53
char ** get_labels(char *filename)
Definition: data.c:657
void run_tag(int argc, char **argv)
Definition: tag.c:126
int n
Definition: darknet.h:555
void * load_thread(void *ptr)
Definition: data.c:1090
int w
Definition: darknet.h:513
void train_tag(char *cfgfile, char *weightfile, int clear)
Definition: tag.c:3
Definition: darknet.h:602
int min
Definition: darknet.h:565
int outputs
Definition: darknet.h:465
size_t get_current_batch(network *net)
Definition: network.c:63
int h
Definition: darknet.h:468
float angle
Definition: darknet.h:572
list * get_paths(char *filename)
Definition: data.c:12
void top_predictions(network *net, int n, int *index)
Definition: network.c:491
free_ptrs
Definition: darknet.py:76
int w
Definition: darknet.h:468
Definition: darknet.h:538
void test_tag(char *cfgfile, char *weightfile, char *filename)
Definition: tag.c:83
float * data
Definition: darknet.h:516
float exposure
Definition: darknet.h:476
float angle
Definition: darknet.h:474