darknet  v3
convolutional_layer.h
Go to the documentation of this file.
1 #ifndef CONVOLUTIONAL_LAYER_H
2 #define CONVOLUTIONAL_LAYER_H
3 
4 #include "cuda.h"
5 #include "image.h"
6 #include "activations.h"
7 #include "layer.h"
8 #include "network.h"
9 
11 
12 #ifdef GPU
16 
19 
20 void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
21 void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
22 void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t);
23 #ifdef CUDNN
24 void cudnn_convolutional_setup(layer *l);
25 #endif
26 #endif
27 
28 convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam);
33 void binarize_weights(float *weights, int n, int size, float *binary);
35 void binarize_weights2(float *weights, int n, int size, char *binary, float *scales);
36 
38 
39 void add_bias(float *output, float *biases, int batch, int n, int size);
40 void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
41 
45 
48 
49 #endif
50 
ACTIVATION
Definition: darknet.h:56
int convolutional_out_height(convolutional_layer layer)
void forward_convolutional_layer_gpu(convolutional_layer l, network net)
void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
Definition: blas_kernels.cu:69
layer convolutional_layer
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
void pull_convolutional_layer(layer l)
Definition: darknet.h:512
void add_bias(float *output, float *biases, int batch, int n, int size)
void forward_convolutional_layer(const convolutional_layer layer, network net)
void resize_convolutional_layer(convolutional_layer *layer, int w, int h)
void update_convolutional_layer(convolutional_layer layer, update_args a)
void swap_binary(convolutional_layer *l)
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
image get_convolutional_delta(convolutional_layer layer)
void backward_convolutional_layer_gpu(convolutional_layer l, network net)
image get_convolutional_image(convolutional_layer layer)
image get_convolutional_weight(convolutional_layer layer, int i)
void binarize_weights(float *weights, int n, int size, float *binary)
image * visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights)
void push_convolutional_layer(layer l)
int convolutional_out_width(convolutional_layer layer)
void update_convolutional_layer_gpu(layer l, update_args a)
void backward_convolutional_layer(convolutional_layer layer, network net)
void binarize_weights2(float *weights, int n, int size, char *binary, float *scales)
void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
Definition: darknet.h:119