7 extern void predict_classifier(
char *datacfg,
char *cfgfile,
char *weightfile,
char *filename,
int top);
8 extern void test_detector(
char *datacfg,
char *cfgfile,
char *weightfile,
char *filename,
float thresh,
float hier_thresh,
char *outfile,
int fullscreen);
9 extern void run_yolo(
int argc,
char **argv);
11 extern void run_coco(
int argc,
char **argv);
19 extern void run_tag(
int argc,
char **argv);
20 extern void run_cifar(
int argc,
char **argv);
21 extern void run_go(
int argc,
char **argv);
22 extern void run_art(
int argc,
char **argv);
23 extern void run_super(
int argc,
char **argv);
24 extern void run_lsd(
int argc,
char **argv);
28 char *cfgfile = argv[2];
29 char *outfile = argv[3];
34 char *weightfile = argv[4];
39 for(i = 0; i < n; ++i){
40 weightfile = argv[i+5];
42 for(j = 0; j < net->
n; ++j){
62 for(j = 0; j < net->
n; ++j){
86 for(i = 0; i < net->
n; ++i){
119 if (tics == 0) tics = 1000;
125 for(i = 0; i < tics; ++i){
130 printf(
"\n%d evals, %f Seconds\n", tics, t);
131 printf(
"Floating Point Operations: %.2f Bn\n", (
float)ops/1000000000.);
132 printf(
"FLOPS: %.2f Bn\n", (
float)ops/1000000000.*tics/t);
133 printf(
"Speed: %f sec/eval\n", t/tics);
134 printf(
"Speed: %f Hz\n", tics/t);
142 printf(
"Floating Point Operations: %ld\n", ops);
143 printf(
"Floating Point Operations: %.2f Bn\n", (
float)ops/1000000000.);
146 void oneoff(
char *cfgfile,
char *weightfile,
char *outfile)
150 int oldn = net->
layers[net->
n - 2].
n;
163 printf(
"%d\n", oldn);
173 void oneoff2(
char *cfgfile,
char *weightfile,
char *outfile,
int l)
185 void partial(
char *cfgfile,
char *weightfile,
char *outfile,
int max)
199 for(i = 0; i < l.
n; ++i){
216 for(i = 0; i < net->
n; ++i){
226 void rgbgr_net(
char *cfgfile,
char *weightfile,
char *outfile)
231 for(i = 0; i < net->
n; ++i){
246 for (i = 0; i < net->
n; ++i) {
270 l.
scales = calloc(n,
sizeof(
float));
271 for(j = 0; j < n; ++j){
284 for(i = 0; i < net->
n; ++i){
310 for (i = 0; i < net->
n; ++i) {
313 printf(
"Connected Layer %d\n", i);
317 printf(
"GRU Layer %d\n", i);
340 for (i = 0; i < net->
n; ++i) {
369 void mkimg(
char *cfgfile,
char *weightfile,
int h,
int w,
int num,
char *prefix)
375 for(z = 0; z < num; ++z){
379 for(i = 0; i < 100; ++i){
383 int dx = rand()%(w-r.
w);
384 int dy = rand()%(h-r.
h);
389 sprintf(buff,
"%s/gen_%d", prefix, z);
404 int main(
int argc,
char **argv)
410 fprintf(stderr,
"usage: %s <function>\n", argv[0]);
414 if(
find_arg(argc, argv,
"-nogpu")) {
426 if (0 == strcmp(argv[1],
"average")){
428 }
else if (0 == strcmp(argv[1],
"yolo")){
430 }
else if (0 == strcmp(argv[1],
"super")){
432 }
else if (0 == strcmp(argv[1],
"lsd")){
434 }
else if (0 == strcmp(argv[1],
"detector")){
436 }
else if (0 == strcmp(argv[1],
"detect")){
438 char *filename = (argc > 4) ? argv[4]: 0;
440 int fullscreen =
find_arg(argc, argv,
"-fullscreen");
441 test_detector(
"cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);
442 }
else if (0 == strcmp(argv[1],
"cifar")){
444 }
else if (0 == strcmp(argv[1],
"go")){
446 }
else if (0 == strcmp(argv[1],
"rnn")){
448 }
else if (0 == strcmp(argv[1],
"coco")){
450 }
else if (0 == strcmp(argv[1],
"classify")){
452 }
else if (0 == strcmp(argv[1],
"classifier")){
454 }
else if (0 == strcmp(argv[1],
"regressor")){
456 }
else if (0 == strcmp(argv[1],
"isegmenter")){
458 }
else if (0 == strcmp(argv[1],
"segmenter")){
460 }
else if (0 == strcmp(argv[1],
"art")){
462 }
else if (0 == strcmp(argv[1],
"tag")){
464 }
else if (0 == strcmp(argv[1],
"3d")){
465 composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
466 }
else if (0 == strcmp(argv[1],
"test")){
468 }
else if (0 == strcmp(argv[1],
"captcha")){
470 }
else if (0 == strcmp(argv[1],
"nightmare")){
472 }
else if (0 == strcmp(argv[1],
"rgbgr")){
474 }
else if (0 == strcmp(argv[1],
"reset")){
476 }
else if (0 == strcmp(argv[1],
"denormalize")){
478 }
else if (0 == strcmp(argv[1],
"statistics")){
480 }
else if (0 == strcmp(argv[1],
"normalize")){
482 }
else if (0 == strcmp(argv[1],
"rescale")){
484 }
else if (0 == strcmp(argv[1],
"ops")){
486 }
else if (0 == strcmp(argv[1],
"speed")){
487 speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
488 }
else if (0 == strcmp(argv[1],
"oneoff")){
489 oneoff(argv[2], argv[3], argv[4]);
490 }
else if (0 == strcmp(argv[1],
"oneoff2")){
491 oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
492 }
else if (0 == strcmp(argv[1],
"print")){
494 }
else if (0 == strcmp(argv[1],
"partial")){
495 partial(argv[2], argv[3], argv[4], atoi(argv[5]));
496 }
else if (0 == strcmp(argv[1],
"average")){
498 }
else if (0 == strcmp(argv[1],
"visualize")){
499 visualize(argv[2], (argc > 3) ? argv[3] : 0);
500 }
else if (0 == strcmp(argv[1],
"mkimg")){
501 mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]);
502 }
else if (0 == strcmp(argv[1],
"imtest")){
505 fprintf(stderr,
"Not an option: %s\n", argv[1]);
void composite_3d(char *f1, char *f2, char *out, int delta)
void oneoff(char *cfgfile, char *weightfile, char *outfile)
void run_lsd(int argc, char **argv)
image copy_image(image p)
struct layer * input_h_layer
int find_arg(int argc, char *argv[], char *arg)
struct layer * output_layer
void set_batch_network(network *net, int b)
void print_weights(char *cfgfile, char *weightfile, int n)
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
struct layer * state_z_layer
void run_char_rnn(int argc, char **argv)
void visualize_network(network *net)
void average(int argc, char *argv[])
void run_classifier(int argc, char **argv)
char * find_char_arg(int argc, char **argv, char *arg, char *def)
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
void save_image(image p, const char *name)
void denormalize_convolutional_layer(layer l)
void save_weights(network *net, char *filename)
network * parse_network_cfg(char *filename)
void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
void fill_image(image m, float s)
void test_resize(char *filename)
void save_weights_upto(network *net, char *filename, int cutoff)
long numops(network *net)
struct layer * input_r_layer
void load_weights_upto(network *net, char *filename, int start, int cutoff)
void run_tag(int argc, char **argv)
void run_captcha(int argc, char **argv)
void run_art(int argc, char **argv)
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
void run_segmenter(int argc, char **argv)
layer normalize_layer(layer l, int n)
void run_go(int argc, char **argv)
struct layer * input_z_layer
void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
void rescale_weights(layer l, float scale, float trans)
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
void statistics_net(char *cfgfile, char *weightfile)
float find_float_arg(int argc, char **argv, char *arg, float def)
void operations(char *cfgfile)
void run_super(int argc, char **argv)
void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
void scal_cpu(int N, float ALPHA, float *X, int INCX)
struct layer * input_layer
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
void run_yolo(int argc, char **argv)
struct layer * state_r_layer
int find_int_arg(int argc, char **argv, char *arg, int def)
network * load_network(char *cfg, char *weights, int clear)
void speed(char *cfgfile, int tics)
void statistics_connected_layer(layer l)
void run_nightmare(int argc, char **argv)
void run_regressor(int argc, char **argv)
void denormalize_connected_layer(layer l)
void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
void cuda_set_device(int n)
void run_isegmenter(int argc, char **argv)
void random_distort_image(image im, float hue, float saturation, float exposure)
void rgbgr_weights(layer l)
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
image * get_weights(layer l)
struct layer * state_h_layer
void partial(char *cfgfile, char *weightfile, char *outfile, int max)
void rotate_image_cw(image im, int times)
void run_cifar(int argc, char **argv)
void load_weights(network *net, char *filename)
void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
void run_detector(int argc, char **argv)
double what_time_is_it_now()
void ghost_image(image source, image dest, int dx, int dy)
struct layer * self_layer
void visualize(char *cfgfile, char *weightfile)
void run_coco(int argc, char **argv)
int main(int argc, char **argv)